

IV B.TECH I SEM MALLA REDDY ENGINEERING COLLEGE

(UGC Autonomous Institution, Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad). Accredited 2nd time by NAAC with 'A' Grade, Maisammaguda (H), Medchal-Malkajgiri District, Secunderabad, Telangana State – 500100, <u>www.mrec.ac.in</u>

Department of Mechanical Engineering

B.Tech – IV Year I Semester

PRODUCTION DRAWING PRACTICE

LABORATORY MANUAL

PDP LAB

UNIT I CONVENTIONAL REPRESENTATION

INTRODUCTION:

Certain standard conventions are used to represent the following in the draughting practice, which will help in reducing draughting time:

- 1. Materials
- 2. Machine components
- 3. Welded joints
- 4. Electrical circuits
- 5. Hydraulic circuits
- 6. Pneumatic circuits

CONVENTIONAL REPRESENTATION OF MATERIALS

	Steel, Cast Iron, Copper and its Alloys, Aluminium and its Alloys, etc.
	Lead, Zinc, Tin, White-metal, etc.
1	Glass
	Porcelain, Stoneware, Marble, Slate, etc.
	Asbestos, Fibre, Felt, Synthetic resin products, Paper, Cork, Linoleum, Rubber, Leather, Wax, Insulating and Filling materials, etc
	Water, Oil, Petrol, Kerosene, etc.
	Wood, Plywood, etc.
	A mixture of Cement, Sand and Gravel

MREC(A)

Page | 3

CONVENTIONAL REPRESENTATION OF MACHINE COMPONENTS

CONVENTIONAL REPRESENTATION OF MACHINE COMPONENTS

MREC(A)

Page | 5

PDP LAB

Title	e Convention	
Spur gear		(\bigcirc)
Bevel gear	×	
Worm wheel		
Worm		

CONVENTIONAL REPRESENTATION OF MACHINE COMPONENTS

Elementary welding symbols

No.	Designation	Illustration	Symbol
1	Butt weld between plates with raised edges (the raised edges being melted down completely)		ハ
2	Square butt weld		- []
3	Single-V butt weld		\vee
4	Single-bevel butt weld		V
5	Single-V butt weld with broad root face		Y
6	Single-bevel butt weld with broad root face		Y
7	Single-U butt weld (parallel or sloping sides)		Y
8	Single - J butt weld		Y
9	Backing run; back or backing weld		D
10	Fillet weld		

Supplementary welding symbols

Shape of weld surface	Symbol
(a) Flat (usually finished flush)	
(b) Convex	
(c) Concave	\mathcal{L}

Combination of elementary and supplementary symbols

Designation	Illustration	Symbol	
Flat (flush) single-V butt weld		$\overline{\vee}$	
Convex double-V butt weld		ŷ	
Concave fillet weld		R	
Flat (flush) single-V butt weld with flat (flush) backing run		<u>R</u>	

PDP LAB

	Designation symbol	Thestation	Representation	Symbo	lization
No.	(Number refer to Table 13.3)	Illustration		either	or
4	Double-V butt weld (X weld) 3–3	and a second		<u>,</u> *	X
5	Double bevel butt weld	and the second sec		<u>*</u>	K
6	`(K weld) 4–4			<u>, K</u>	K
7	Double-U butt weld V 7 7–7	and a second	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u>, ×</u>	X
8	Fillet weld				
9	10–10				

COMBINATION OF ELEMENTARY ELEMENTS

S. No.	Description	Symbol	S. No.	Description	Symbol
1	Main switch (light)		15	Bracket fan	-8
2	Main switch (power)	HP	16	Exhaust fan	
3	Single throw switch, general	_/_	17	Earth In the printer	
4	Double throw switch, general	- /	18	Fire alarm	\bigcirc
5	Knife switch, general	X	19	D.C	
6	Switch with horn gap	_/	20	A.C	\sim
7	Two pin socket, 5 Amp	X	21	Single phase alternating current	50 c/s
8	Two pin socket with switch, 5 Amp	X	22	Three phase alternating current	з 🔨
9	Three pin socket with switch, 5 Amp	Ŭ,	23	Neutral	N
10	Single tube light	$\not \simeq$	24	Resistor	- <u>R</u> -
11	Double tube light		25	Variable resistor	- R-
12	Horn		26	Inductor	-[-]-
13	Siren		27	Capacitor	
14	Ceiling fan	∞	28	Variable capacitor	-#

CIRCUIT SYMBOLS FOR ELECTRICAL ITEMS

S.	Description	Symbol	S.	Description	Symbol
29	Two pin socket	00	42	Commutating or compensating wiring	\sim
30	Three pin socket	$\bigcirc \\ \circ \\ $	45	Series winding	\sim
⁻ 31	Cell		44	Shunt winding or separate winding	~~~~
32	Battery		45	1-Phase	\bigcirc
33	D.C volt meter	<u>v</u>	46	2-Phase	\otimes
34	D.C ampere meter	A	47	3-Phase wye (ungrounded)	\bigcirc
35	D.C/A.C ampere meter		48	3-Phase wye (grounded)	
36	Watt meter	W	49	3-Phase delta	\bigcirc
37	Ohm meter	(-)		Circuit breakers	a late
38	Energy meter	КWh	50	Air or general	
39	Fuse	ΦФ	51	Oil or other types	
40	Lamp		52	3-Pole with thermal overload device	-~
	Wiring symbols		53	3-Pole with magnetic overload device	
41	General		54	3-Pole draw-out type	$\rightarrow \rightarrow \rightarrow$

CIRCUIT SYMBOLS FOR ELECTRICAL ITEMS

PDP LAB

SYMBOLS FOR MOTORS

Description	Symbol	Description	Symbol
Machine (motor or generator) or rotating armature (basic symbol)	0	Induction motor, single phase, squirrel cage	H 1 2
D.C motor (M), D.C generator (G)- General symbol	G	Induction motor, 3 phase, squirrel cage	M 3~
A.C motor (M), A.C generator (G)- General symbol		Induction motor, 3 phase with wound rotor	
D.C two wire generator (G) or motor (M)- Separately excited		Induction motor, 3 phase, squirrel cage, both leads of each phase brought-out	≡€SE
D.C two wire shunt generator (G) or motor (M)		Single phase synchronous generator	Ģ{
Separately excited D.C generator or motor with commutating and/or compensating field winding	$\langle \langle \rangle$	Three phase synchronous motor or generator or condenser	O{
One phase magneto-electric generator	Ŏ	Three phase synchronous motor or generator or condenser with neutral brought-out	Ŏ{
Three phase magneto-electric generator	Õ		

PDP LAB

SYMBOLS FOR TRANSFORMERS

S. No.	Description	Symbol
1.	Transformer, general	
2	Auto transformer, general	لمب
3	Transformer, adjustable	
4	Single phase transformer with taps	
5	Single phase, 2 winding transformer	
6	Potential transformer	$\longrightarrow \longrightarrow$
7	Transformer with three separate windings	luu luu M
8	Current transformer	ŧ
9	Bushing type current transformer	- ru -

MREC(A)

Page | 13

S. No.	Description	Symbol
1	Rectifier, diode	>
2	Zener diode	
з	Rectifier equipment in bridge connector	\rightarrow
4	Transistor type PNP	$\neg \bigcirc$
5	Transistor type NPN	
6	Thyristor (general)	
7	Contactor-make contact	
8	Contactor-break contact	
9	Photo electric cell	-
10	Microphone	-0-
11	Loudspeaker	

Graphical symbols for electronic devices

PDP LAB

[[11	T	Π	1
Description	Symbol	Description	Symbol	Description	Symbol
1. Arrows		Capacity		By solenoid	
Indication of direction	† ‡ ↓	3. Control valves		By application of pneumatic pressure	->
Regulation/variability	/	Flow path		By pedal	À
2. Flow lines		Flow shut-off	Ţ	5. 2/2 valve *	
Pipe line		Initial connections		6. Drossura raliatuatua	ا ال
Free end of a pipe line		4. Valve actuation symbols		- 0. Flessure lener valve	
Earthed/vented end		Push-button	(H_	7. Sequence valve	
Fixed throttle		By lever	Å		
Adjustable throttle	<u> </u>	By roller	0=[8. Pressure reducing valve	
Pneumatic contact		By plunger		9. Pilot operated valve	
Actuator	-0-	By spring	W		

SYMBOLS FOR HYDRAULIC AND PNEUMATIC PARAMETERS

Hydraulic	Parameter/device	Pneumatic
A	Uni-direction of flow	Δ
\$	Bi-direction of flow	
世,	Exhaust to atmosphere	
¢=	1. Fixed displacement pump Uni-directional	\$ =
() =	Bi-directional	\$ =
Æ	2. Variable displacement pump Uni-directional	Ø
Æ	Bi-directional	Æ
¢=	3. Fixed displacement motor Uni-directional	¢=
Ф=	Bi-directional	¢
Ø	4. Variable displacement motor Uni-directional	¢
Æ	Bi-directional	Ø

Graphic symbols

UNIT –II

LIMITS and FITS

LIMIT SYSTEM

Following are some of the terms used in the limit system,

Tolerance: The permissible variation of a size is called tolerance. It is the difference between the maximum and minimum permissible limits of the given size.

Limits: The two extreme permissible sizes between which the actual size is contained are called limits. The maximum size is called the upper limit and the minimum size is called the lower limit.

Deviation: It is the algebraic difference between a size (actual, maximum, etc.) and the corresponding basic size.

Actual Deviation: It is the algebraic difference between the actual size and the corresponding basic size.

Upper Deviation: It is the algebraic difference between the maximum limit of the size and the corresponding basic size.

Lower Deviation: It is the algebraic difference between the minimum limit of the size and the correspondingbasic size.

Allowance: It is the dimensional difference between the maximum material limits of the mating parts, intentionally provided to obtain the desired class of fit. If the allowance is positive, it will result in minimum clearance between the mating parts and if the allowance is negative, it will result maximum Interference.

FITS : The relation between two mating parts is known as a fit. Depending upon the actual limits of the hole or shaft sizes, fits may be classified as clearance fit, transition fit and interference fit.

Types of fits

1. Clearance fit 2. Transtion fit 3. Interference fit

Clearance Fit: It is a fit that gives a clearance between the two mating parts.

Transition Fit: This fit may result in either an interference or a clearance, depending upon the actual values of the tolerance of individual parts.

Interference Fit: If the difference between the hole and shaft sizes is negative before assembly; an interference fit is obtained.

HOLE BASIS SYSTEM, SHAFT BASIS SYSTEM

In working out limit dimensions for the three classes of fits; two systems are in use, viz., the hole basis system and shaft basis system.

HOLE BASIS SYSTEM: In this system, the size of the shaft is obtained by subtracting the allowance from the basic size of the hole. In this system, the lower deviation of the hole is zero. The letter symbol for this situation is 'H'.

HAFT BASIS SYSTEM: In this system, the size of the hole is obtained by adding the allowance to the basic size of the Shaft. plied to each part. In this system, the upper deviation of the shaft is zero. The letter symbol for this situation is 'h'.

MREC(A)

Page | 18

Interference fit

MREC(A)

Page | 19

Hole basis and shaft basis system

Symbols representing the characteristics to be toleranced

Characteristics t	o be toleranced	Symbols
	Straightness	·
	Flatness	
Form of single features	Circularity (roundness)	0
	Cylindricity	Q
	Profile of any line	\cap
	Profile of any surface	\square
	Parallelism	11
Orientation of related features	Perpendicularity (squareness)	1
	Angularity	_
	Position	\oplus
Position of related features	Concentricity and coaxiality	\bigcirc
	Symmetry	-=-
	Run-out	1

Datum feature: A datum feature is a feature of a part, such as an edge, surface, or a hole, which forms the basis For a datum or is used to establish its location

UNIT III

UNIT IV

SURFACE ROUGHNESS AND ITS INDICATION

Surface Roughness: The properties and performance of machine components are affected by the degree of roughness of the various surfaces. The higher the smoothness of the surface, the better is the fatigue strength and corrosion resistance. Friction between mating g parts is also reduced due to better surface finish.

Surface Roughness Number: The surface roughness number represents the average departure of the surface from perfection over a prescribed sampling length and is expressed inmicrons.

$$R_a = \frac{h_1 + h_2 + h_3 + \dots + h_n}{n}$$

The surface roughness may be measured, using any one of the following:

- 1. Straight edge
- 2. Surface gauge
- 3. Optical flat
- 4. Tool makers Microscopes
- 5. Profilometer
- 6. Profilograph
- 7.Talysurf

Machine Symbols: The basic symbol consists of two legs of unequal length, inclined at approximately 60° to the line, representing the surface considered. This symbol may be used where it is necessary to indicate that the surface is machined, without indicating the grade of roughness or the process to be used.

emoval Of Material Is Allowed.

pecial surface characteristics

d)

Indication of Machining Allowance

Roughness values R _a µm	Roughness grade number	Roughness grade symbol
50	N12	\sim
25	N11	$\overline{\nabla}$
12.5	N10	\vee
6.3	N9	
3.2	N8	\bigtriangledown
1.6	N7	
0.8	N6	
0.4	N5	\bigtriangledown
0.2	N4	2 C A
0.1	N3	
0.05	N2	\bigtriangledown
0.025	N1	

Equivalent surface roughness symbols

Indication of Special Roughness Characteristics: In certain circumstances, for functional reasons, it may be necessary to specify additional special requirements, concerning surface roughness. If it is required that the final surface texture be produced by one particular production method, this method should be indicated on an extension of the longer arm of the symbol. Also, any indications relating to treatment of coating may be given on the extension

PDP LA	B	IV B.TECH I SEM
of the lor	nger arm of the symbol.	
Symbol	Inter	pretation
=	Parallel to the plane of projection of the view in which the symbol is used	Direction of lay
L	Perpendicular to the plane of projection of the view in which the symbol is used	Direction of lay
Х	Crossed in two slant directions relative to the plane of projection of the view in which the symbol is used	Direction of lay
М	Multi-directional	
С	Approximately circular, relative to the centre of the surface to which the symbol is applied	
R	Approximately radial, relative to the centre of the surface to which the symbol is applied	
<u>, </u>	Symbols specifying the d	lirections of lay
MREC(A)		Page 26

UNIT V

DETAILED and PART DRAWINGS

Heat treatment and surface treatment symbols used on drawings

Stuffing Box is used to prevent loss of fluid such as steam, between sliding or turning parts of machine elements. In a steam engine, when the piston rod reciprocates through the cylinder cover; stuffing box provided in the cylinder cover, prevents leakage of steam from the cylinder.

Detailed part drawings of stuffing box

Assembly of stuffing box

IV B.TECH I SEM

Detailed part drawings of stuffing box

CROSSHEAD is used in horizontal steam engines for connecting the piston rod and connecting rod. The crosshead, with the help of slide block 4, reciprocates between two guides provided in the engine frame. The dudgeon pin 3 connects the slide blocks with the crosshead block 1. This acts as a pin joint for the connecting rod (not shown in figure). The piston rod 2 is secured to the crosshead block by means of the cotter 5. The assembly ensures reciprocating motion along a straight line for the piston rod and reciprocating cum oscillatory motion for the connecting rod.

Stuffing box

Qty

1

1

1

2

2

Fig: Steam Engine Cross Head

ECCENTRIC is used to provide a short reciprocating motion, actuated by the rotation of a shaft. Eccentrics are used for operating steam valves, small pump plungers, shaking screens, etc. Rotary motion can be converted into a reciprocating motion with an eccentric, but the reverse conversion is not possible due to excessive friction between the sheave and the strap. The sheave 2 which is in the form of a circular disc with a stepped rim is keyed on the shaft. When the shaft rotates, the sheave rotates eccentrically because of the eccentrically placed hole in it and imparts reciprocating motion to eccentric rod 6. The straps 1 are semi-circular elements with an annular recess to accommodate the stepped rim of the sheave. These are held together on the sheave by means of strap bolts 4, with packing strips 3 placed between them. The eccentric rod is fixed to the eccentric strap by means of the studs and nuts 5.

Fig:Details of an Eccentric

CONNECTING ROD is used in centre crank engines. The bearing bush 4 which is in one piece, is fitted at the small end of the connecting rod 1. The small end of the rod is connected to the piston. The main bearing bush, which is split into two halves, is placed at the big end of the connecting rod. The big end of the rod is connected to the crank pin of the centre crank. First, the split bearing brasses 3 are placed on the crank pin, then the big end of the connecting rod and the cap 2 are clamped onto these, by means of two bolts 5 and nuts 6.

-
108
2
1
2
2

Fig. Petrol engine connecting rod

Fig. Details of a Petrol engine connecting rod

IV B.TECH I SEM

SCREW JACK: Screw jacks are used for raising heavy loads through very small heights. Figure shows the details of one type of screw jack. In this, the screw 3 works in the nut 2 which is press fitted into the main body 1. The tommy bar 7 is inserted into a hole through the enlarged head of the screw and when this is turned, the screw will move up or down, thereby raising or lowering the load.

* Screw jack

Fig: Screw jack

PLUMMER BLOCK is used for long shafts, requiring intermediate support, especially when the shaft cannot be introduced into the bearing, end-wise. The bottom half 2 of the bearing brass is placed in the base 1 such that, the snug of the bearing enters into the corresponding recess in the base; preventing rotation of the brasses. After placing the journal (shaft) on the bottom half of the bearing brass, kept in the base; the upper half of the bearing brass 3 is placed and the cap 4 is then fixed to the base, by means of two bolts with nuts 5. The bearing is made of two halves so that the support can be introduced at any location of the long shaft.

IV B.TECH I SEM

Fig:Details of Plummer block

Fig: Plummer block

IV B.TECH I SEM

LATHE TOOL POST supports one cutting tool at a time and is used on small sized lathes. This unit is fixed on the compound rest of the lathe carriage. The tool post consists of a circular body 1 with a collar at one end and a threaded hole at the other. A vertical slot is provided in the body to accommodate the tool/tool holder. The body is slid through the square block 5, which is finally located in the T-slot, provided in the compound rest. The design permits rotation of the body about the vertical axis. A circular ring 4 having spherical top surface is slid over the body and the wedge 3 is located in the vertical slot. The tool / tool holder is placed over the wedge. By sliding the wedge on the ring, the tool tip level can be adjusted. The tool is clamped in position by means of the square headed clamping screw 2, passing through the head of the body.

Parts list			
No.	Name	Matt	Qty
1	Piller	MCS	1
2	Block	MCS	1
3	Ring	MS	1
4	Wedge	MCS	5
15	Screw	TS	

FIG 5:LATHE SINGLE TOOL POST

(4)

IV B.TECH I SEM

UNIVERSAL COUPLING is a rigid coupling and is used to connect two shafts, whose axes intersect if extended. The forks 2 are mounted at the ends of two shafts 1, making use of sunk keys 6. The central block 3, having two arms at right angle to each other, is placed between the forks and connected to both of them by using pins 4 and collars 5. A taper pin (not shown) is used to keep the pins 4 in position. During rotation of shafts, the angle between them can be varied.

